
MULTIMEDIA TRAINING KIT

CHOOSING OPEN SOURCE SOFTWARE HANDOUT
Developed by: Mark Surman and Jason Diceman, The Commons Group, for the

Association for Progressive Communications (APC)

Table of Contents
MULTIMEDIA TRAINING KIT...1
CHOOSING OPEN SOURCE SOFTWARE HANDOUT..1
About this document...1
Copyright information..1
Introduction..1
Step One: Define your needs and constraints ...2
Step Two: Identify your options ..2
Step Three: Undertake a detailed review..3
Making a decision..4

Will it save us money?...4
Beyond decision-making: migration and training..4

How will we make the switch?...4
How should we approach training?..5

About this document
These materials are part of the Multimedia Training Kit (MMTK). The MMTK provides an
integrated set of multimedia training materials and resources to support community media,
community multimedia centres, telecentres, and other initiatives using information and
communications technologies (ICTs) to empower communities and support development
work.

Copyright information
This unit is made available under the Creative Commons Attribution-ShareAlike License. To
find out how you may use these materials please read the copyright statement included with
this unit or see http://creativecommons.org/licenses/by-sa/1.0/legalcode

Introduction
Whether you are working with open source or commercial tools, picking the right software can
be a difficult process. Often, we don't discover that we have made a software choice until it is
too late – when we are already using the software in our organization. Also, it is easy to be
swayed by an attractive new feature or compelling promotional language on a web site, even if
the software in question has certain deficiencies.

The best way to avoid these pitfalls is to invest in a thorough and thoughtful review process
before choosing a new piece of software. The simple 3 step method for open source
decision making outlined below is designed to guide organizations through exactly this kind
of process. Considering both organizational needs and technical issues, this method can be
used by any one with basic information technology and organizational planning skills.

This process works well for all kinds of software – server, desktop, web applications.
However, the degree of detail and analysis required will vary depending on the situation and
type of software being reviewed. For example, the process of selecting a file server platform to
support a single work group can be done very quickly and with very little testing. In contrast,
choosing a new word processing application or e-mail client for hundreds of different people in
multiple locations will require a more rigorous process with extensive testing. Also, projects

mmtk_opensource_2_handout.sxw
Last updated 26 December 2003
Available online from http://www.itrainonline.org/itrainonline/mmtk/

1

that require software customization – especially web application projects – require additional
planning related to the programming and development process.

Step One: Define your needs and constraints
The first step in the process is to clearly define your needs. This should include both the
overall needs of your organization as well as the needs of individual users. Specific issues to
consider include:

· Organizational needs – What problem are you trying to solve? Why is your organization
seeking new software?

· User needs – What do individual users need to be able to do with the software? Are there
particular things users have already asked for?

· Features – What are the actual features that must be provided by the software? How
important are each of these features?

· Language – What languages does the software need to accommodate?

At the same time, it is also important to consider the constraints that your organization is
under in considering software. Issues to consider include:

· Budget – While the software may be free, there will definitely be training and integration
costs. How much do you have to spend?

· Timeframe – How quickly do you need to implement the software? Does it need to be
something that can be up and running tomorrow? Or is there time for customization and
configuration work?

· Compatibility – Are there legacy systems that the new software must work with? Does it
need to run on a particular platform?

· Skills – What skills do your existing information technology staff or volunteers have?
What skills do end users have? How adaptable are people to new software?

All of these factors will play a major role in the process of identifying your software options and
making a final software selection. Given this, is important to write down information about all
of these factors.

Step Two: Identify your options
The next step in the process is to come up with a short list of three to five software packages
that are likely to meet your needs. This is basically a process of reading through information
about various software packages and comparing them against the needs and constraints you
listed in the previous phase. There are a number of places that you can look for open source
packages to review:

· Recommendations – Ask people you know what packages they have used and liked in
the past. These people could be from other NGOs or from organizations that provide
technical support to NGOs.

· This guide – The list of additional resources which accompanies this guide includes a list
of mature open source software options in a number of categories. This is a good starting
point.

· Reviews and directories – There are a number of good open source directories and
review web sites. Good places to start include OSDir.com and OpenSourceCMS.com.

mmtk_opensource_2_handout.sxw
Last updated 26 December 2003
Available online from http://www.itrainonline.org/itrainonline/mmtk/

2

· Software package sites – Most open source software packages have their own web site.
These sites usually contain promotional information and documentation that will help with
your review.

Using directories, reviews and software package sites, you should be able to determine which
packages are able to meet your basic requirements. When you find a package that seems to
fit the bill, you should compare it against the detailed needs and constraints list using the
Software Package Review Worksheet. If a package meets most or all of your needs and
constraints, you should add it to the short list for detailed review.

Step Three: Undertake a detailed review
Once you have identified your options, you are ready for the final step – reviewing and
choosing a software package from your short list. At this stage, all of the packages that you
are reviewing should be generally suitable for your task. The aim of this section is to assess
which of the possible options will be best for your organization. This assessment can be done
by rating each package against the following criteria:

· Quality – How well do the features you need seem to work? Do you like how they have
been implemented?

· Ease of use – Is the process of using the software intuitive and obvious given the skills of
the people who will be using the software? Or is there a steep learning curve?

· Ease of migration – If moving from another software package, how hard is the migration
process? Is it likely that users will have a difficult time adapting?

· Stability – Does the software crash often? Is a lot of effort required to maintain it and
keep it running?

· Compatibility – Does the software use file formats and communications protocols that
are based on widely accepted open standards? Is it compatible with other systems you
are using?

· Flexibility – How hard is it to customize and adapt the software to your organization's
needs? Will the software grow with your needs? Is it scalable?

· User response – When given a chance to test the software, how did users respond?
Were they able to figure it out? Were they excited about the way the software worked?

· Buy-in – Is there broad support for a particular package within your organization? Are
there any major detractors? Active support or resistance for a package can have a major
impact on successful implementation.

· Wide use – Is there evidence that others are using this software package? Does the
popularity of the package seem to be increasing or declining?

· Support community – Is there an active online support community? Are there recent
postings to the support mailing list? If you post a question, does someone from the
community get back to you with a helpful response?

In ranking software against these criteria, hands-on testing is the key. Each piece of software
should be installed and tested for quality, stability and compatibility. A group of key users
should also be given the chance to try out the software in order to assess factors such as
ease of use, ease of migration and user response. Information about usage and support can
be gathered by looking at the software package's web site. If the support forums on the site
are not active, it is unlikely that the software is widely used or that support will be available.

In terms of ranking, each software package on the short list should be rated against each of
the criteria above. A score from one (insufficient) to five (excellent) should be given for each
criteria. Ideally a short note on the rationale for each score should also be included. This

mmtk_opensource_2_handout.sxw
Last updated 26 December 2003
Available online from http://www.itrainonline.org/itrainonline/mmtk/

3

information can be collected using the Software Package Review Worksheet. Scores can
be compared using the Software Comparison Worksheet.

Making a decision
Once you have completed the 3 step method, you should have a score for each of the
software packages on your short list. This score should be a good indicator of which package
is best for you. If a package scores very low, it is likely that it will cause problems once
implemented and should not be used. This said, you should also use your intuition. If two
packages are close in score, your gut feeling about the "right" package is probably more
important than the actual numbers.

Looking for a second opinion? Check out David Wheeler's "How to Evaluate Open Source
Software / Free Software (OSS/FS) Programs" document. Wheeler offers a methodology
similar to the one offered here, but more from the perspective of a hands-on technical person.
The document can be found at: http://www.dwheeler.com/oss_fs_eval.html

Will it save us money?

One of the big questions with any software decision is "will it save me money"? Answering this
question properly is best done using a "total cost of ownership" (TCO) approach. This means
considering all of the different costs that will be incurred over the lifetime of a particular piece
of technology – hardware, software, maintenance, training, programming, testing, upgrades.
Without all of this information, it is impossible to really know which software solutions are
going to be the most cost effective.

While there are great debates on the topic, there is a great deal of evidence that mature open
source applications offer a lower total cost of ownership than their commercial counterparts. In
an article entitled “Why Open Source Software / Free Software (OSS/FS)? Look at the
Numbers!”, David Wheeler lists the main reasons why open source comes out cheaper:

• Open source costs less to initially acquire because there are no license fees;

• Upgrade and maintenance costs are typically far less due to improved stability and
security;

• Open source software can often use older hardware more efficiently than proprietary
systems, yielding smaller hardware costs and sometimes eliminating the need for new
hardware;

• Experience shows that open source is cheaper especially in server environments, with
many case studies now demonstrating lower TCO for open source.

Wheeler's article also includes many detailed examples and links that show how open source
has saved money in particular circumstances. See: http://www.dwheeler.com/oss_fs_why.html
for these details.

For more information on calculating total cost of ownership, you may want to visit TechSoup
(see: http://www.techsoup.org/howto/articlepage.cfm?ArticleId=295) or the Council on School
Networking (see: http://classroomtco.cosn.org/gartner_intro.html)

Beyond decision-making: migration and training

How will we make the switch?

If you are planning to use open source software to replace an existing system, you will need to
deal with the question of "migration". Migrating from one platform to another should be
handled using a careful and phased approach. The European Union has published a
document entitled the "IDA Open Source Migration Guidelines" that provides detailed

mmtk_opensource_2_handout.sxw
Last updated 26 December 2003
Available online from http://www.itrainonline.org/itrainonline/mmtk/

4

suggestions on how to approach migration. The document starts with the following
recommendations:

• Before starting have a clear understanding of the reasons to migrate;

• Ensure that there is active support for the change from information technology staff and
users;

• Make sure that there is a champion for change - the higher up in the organization the
better;

• Build up expertise and relationships with the open source movement;

• Start with non critical systems;

• Ensure that each step in the migration is manageable.

The IDA guide is an excellent place to turn for information before starting the migration
process. It includes information about leading open source applications in a variety of
categories as well as detailed scenarios describing migrations from common platforms (e.g.
an all Windows desktop and server environment). The guide is online at:
http://europa.eu.int/ISPO/ida/export/files/en/1618.pdf

How should we approach training?

The other issue that needs to be seriously considered is training. Getting the most out of any
technology requires investment in both formal and informal learning for users. Once the
migration and testing phases are done, consider:

• Formal training workshops for all of people who will be using the software you have put
in place. This is especially important for non-technical users who may not be used to
learning new tools on their own.

• Informal peer learning sessions and networks that encourage users to help each other.
Many people learn most effectively from knowledgeable colleagues than they do from a
"teacher". Consider ways that users can help each other learn outside of the classroom
setting.

• Printed "cheat sheets" that provide basic information about how the software works and
can be useful in the context of your organization. This approach is very useful if you are
using open source to replace an existing tool as the cheat sheets can highlight and explain
features that have changed.

• A list of links to online support resources that relate to the software you have put in
place. Each link should have a short description explaining the kind of help it can provide.

• Information about the open source community that supports the software you have
chosen. At a minimum, this should include web site links and mailing list sign up
instructions. This information will be very valuable for system administrators and
developers in your organization.

The exact mix of approaches that make sense for your organization will depend on your
circumstances. Installing a new office suite on everyone's desktop probably will require some
kind of training.

mmtk_opensource_2_handout.sxw
Last updated 26 December 2003
Available online from http://www.itrainonline.org/itrainonline/mmtk/

5

